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Abstract

In this paper we propose a novel image representation
called face X-ray for detecting forgery in face images. The
face X-ray of an input face image is a greyscale image that
reveals whether the input image can be decomposed into the
blending of two images from different sources. It does so by
showing the blending boundary for a forged image and the
absence of blending for a real image. We observe that most
existing face manipulation methods share a common step:
blending the altered face into an existing background im-
age. For this reason, face X-ray provides an effective way
for detecting forgery generated by most existing face manip-
ulation algorithms. Face X-ray is general in the sense that
it only assumes the existence of a blending step and does
not rely on any knowledge of the artifacts associated with
a specific face manipulation technique. Indeed, the algo-
rithm for computing face X-ray can be trained without fake
images generated by any of the state-of-the-art face manip-
ulation methods. Extensive experiments show that face X-
ray remains effective when applied to forgery generated by
unseen face manipulation techniques, while most existing
face forgery detection algorithms experience a significant
performance drop.

1. Introduction

Recent studies have shown rapid progress in facial ma-
nipulation, which enables an attacker to manipulate the fa-
cial area of an image and generate a new image, e.g., chang-
ing the identities or modifying the face attributes. With
the remarkable success in synthesizing realistic faces, it be-
comes infeasible even for humans to distinguish whether
an image has been manipulated. At the same time, these
forged images may be abused for malicious purpose, caus-
ing severe trust issues and security concerns in our society.
Therefore, it is of paramount importance to develop effec-
tive methods for detecting facial forgery.

∗Equal contribution
†Work done during an internship at Microsoft Research Asia

(b)(a)

Figure 1. Face X-ray reveals the blending boundaries in forged
face images and returns a blank image for real images. (a) a real
image and its face X-ray, (b) fake images and their face X-rays.

Our focus in this work is the problem of detecting face
forgeries, such as those produced by current state-of-the-
art face manipulation algorithms including DeepFakes [1],
Face2Face [46], FaceSwap [2], and NeuralTextures [45].
Face forgery detection is a challenging problem because
in real-world scenarios, we often need to detect forgery
without knowing the underlying face manipulation meth-
ods. Most existing works [12, 44, 25, 35, 36] detect face
manipulation in a supervised fashion and their methods are
trained for known face manipulation techniques. For such
face manipulation, these detection methods work quite well
and reach around 98% detection accuracy. However, these
detection methods tend to suffer from overfitting and thus
their effectiveness is limited to the manipulation methods
they are specifically trained for. When applied to forgery
generated by unseen face manipulation methods, these de-
tection methods experience a significant performance drop.

Some recent works [49, 13] have noticed this problem
and attempted to capture more intrinsic forgery evidence
to improve the generalizability. However, their proposed
methods still rely on the generated face forgeries for super-
vision, resulting in limited generalization capability.

In this paper we propose a novel image representation,
face X-ray, for detecting fake face images. The key obser-
vation behind face X-ray is that most existing face manip-
ulation methods share the common step of blending an al-
tered face into an existing background image, and there ex-
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Figure 2. Noise analysis (middle column) and error level analysis
(right column) of (a) a real image and (b) a fake image.

ist intrinsic image discrepancies across the blending bound-
aries. These discrepancies make the boundaries fundamen-
tally detectable. Indeed, due to the acquisition process, each
image has its own distinctive marks introduced either from
hardware (e.g., sensor, lens) or software components (e.g.,
compression, synthesis algorithm) and those marks tend to
present similarly throughout the image [39]. We illustrate
noise analysis1 and error level analysis [21] as two repre-
sentative types of distinctive marks in Figure 2.

Face X-ray capitalizes on the above key observation and
provides an effective way for detecting forgery produced by
most existing face manipulation algorithms. For an input
face image, its face X-ray is a greyscale image that can be
reliably computed from the input. This greyscale image not
only determines whether a face image is forged or real, but
also identifies the location of the blending boundary when
it exists, as shown in Figure 1.

Face X-ray is a significant step forward in the direction
of developing a general face forgery detector

as it only assumes the existence of a blending step and
does not rely on any knowledge of the artifacts associated
with a specific face manipulation algorithm. This level
of generality covers most existing face manipulation algo-
rithms. Moreover, the algorithm for computing face X-ray
can be trained by self-supervised learning with a large num-
ber of blended images composited from real ones, without
fake images generated by any of the state-of-the-art face
manipulation methods. As a result, face X-ray remains
effective when applied to forgery generated by an unseen
face manipulation method, while most existing face forgery
detection algorithms experience a significant performance
drop.

Our experiments demonstrate that face X-ray signifi-
cantly improves the generalization ability through a thor-
ough analysis. We show that our framework achieves a
remarkably high detection accuracy on unseen face forg-
eries, as well as the ability to predict face X-rays reliably

1https://29a.ch/photo-forensics/#noise-analysis

and faithfully on all kinds of recent popular face manipula-
tions. In comparison with other face forgery detectors, our
framework largely exceeds the competitive state-of-the-arts.

2. Related Work
Over the past several years, forgery creation, of particu-

lar interest in faces given its wide applications, has recently
gained significant attention.

With the complementary property of forgery creation
and detection, face forgery detection also becomes an in-
creasingly emerging research area. In this section, we
briefly review prior image forensic methods including face
forensics to which our method belongs.
Image forgery classification. Image forgery detection is
mostly regarded as merely a binary (real or forgery) clas-
sification problem. Early attempts [30, 16, 17] aim to de-
tect forgeries, such as copy-move, removal and splicing that
once were the most common manipulations, by utilizing in-
trinsic statistics (e.g., frequency domain characteristics)

of images. However, it is difficult to handcraft the most
suitable and meaningful features. With the tremendous suc-
cess of deep learning, some works [10, 33, 7] adopt neu-
ral networks to automatically extract discriminative features
for forgery detection.

Recent advanced manipulation techniques, especially
about faces, are capable of manipulating the images in a
way that leaves almost no visual clues and can easily elude
above image tampering detection methods. This makes
face forgery detection increasingly challenging, attracting
a large number of research efforts [12, 44, 25, 32, 28, 18,
3, 22, 35, 36]. For instance, a face forensic approach ex-
ploiting facial expressions and head movements customized
for specific individuals is proposed in [4]. FakeSpotter [47]
uses layer-wise neuron behavior instead of only the last neu-
ron output to train a binary classifier. To handle new gener-
ated images, an incremental learning strategy is introduced
in [27]. Lately, FaceForensics++ [36] provides an extensive
evaluation of forgery detectors in various scenarios.
Image forgery localization. Besides classification, there
are methods focusing on localizing the manipulated region.
Early works [37, 8, 15] reveal the tampered regions using
manually designed low-level image statistics at a local level.
Subsequently, deep neural network is introduced in image
forgery localization, where most works [5, 40, 29, 38] use
multi-task learning to simultaneously detect the manipu-
lated images and locate the manipulated region. Instead of
simply using a multi-task learning strategy, Stehouwer et
al. [41] highlight the informative regions through an atten-
tion mechanism where the attention map is guided by the
groundtruth manipulation mask. Bappy et al. [6] present
a localization architecture that exploits both frequency do-
main and spatial context. However, early works are not well
suited for detecting advanced manipulations, while deep
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Figure 3. Overview of a typical face manipulation pipeline. Pre-
vious works detect artifacts produced by manipulation methods,
while our approach focuses on detecting face X-ray.

learning based methods adopt supervised training, requiring
a huge amount of corresponding groundtruth manipulation
masks, which may be inaccessible in practice.
Generalization ability of Image forgery detection. With
the evolution of new technologies, it has been noted in re-
cent works [19, 11, 49, 13, 23] that the performance of cur-
rent methods drop drastically on forgeries of new types. In
particular, Xuan et al. [49] use an image preprocessing step
to destroy low level unstable artifact, forcing the network
to focus on more intrinsic forensic clues. ForensicTrans-
fer [11] proposes an autorencoder-based neural network to
transfer knowledge between different but related manipula-
tions. LAE [13] also uses autorencoder to learn fine-grained
representation regularized by forgery mask supervision. All
above methods still need forged images to train a supervised
binary classifier, resulting in limited generalization capabil-
ity. Another related work is FWA [23], which targets the
artifacts in affine face warping in a self-supervised way.
However, FWA focuses on detecting DeepFake generated
images such that the detection model is not applicable for
other types of manipulations, e.g., Face2Face.

3. Face X-Ray
We start by introducing the key observation behind face

X-ray. Then we formally define the face X-ray of a given in-
put image. Finally we provide details on obtaining labeled
data (a set of pairs consisting of an image and its corre-
sponding face X-ray) from real images to train our frame-
work in a self-supervised manner.

As shown in Figure 3, a typical facial manipulation
method consists of three stages: 1) detecting the face area;
2) synthesizing a desired target face; 3) blending the target
face into the original image.

Existing face forgery detection methods usually focus
on the second stage and train a supervised per-frame bi-
nary classifier based on datasets including both synthesized
videos generated from manipulation methods and real ones.
Although near perfect detection accuracy is achieved on the
test dataset, we observe significantly degraded performance
when applying the trained model to unseen fake images,
which is empirically verified in Section 5.1.

We take a fundamentally different approach. Instead of
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Figure 4. Illustrating the relationship between face X-ray and the
mask. � represents the element-wise multiplication.

capturing the synthesized artifacts of specific manipulations
in the second stage, we try to locate the blending boundary
that is universally introduced in the third stage of the face
manipulation pipeline. Our approach is based on a key ob-
servation: when an image is formed by blending two images,
there exist intrinsic image discrepancies across the blending
boundary.

It is noted in the literature [14] that each image has its
own distinctive marks or underlying statistics, which mainly
come from two aspects: 1) hardware, e.g. color filter ar-
ray (CFA) interpolation introducing periodic patterns, cam-
era response function that should be similar for each of the
color channels, sensor noise including a series of on-chip
processings such as quantization and white balancing, intro-
ducing a distinct signature; 2) software, e.g., lossy compres-
sion schemes that introduce consistent blocking artifacts,
GAN based synthesis algorithms that may leave unique im-
prints [26, 50]. All above factors contribute to the image
formation, leaving specific signatures that tend to be peri-
odic or homogeneous, which may be disturbed in an altered
image. As a result, we can detect a forged face image by dis-
covering the blending boundary using the inconsistencies of
the underlying image statistics across the boundary.

3.1. Face X-Ray Definition

Given an input face image I , we wish to decide whether
the image is a manipulated image IM that is obtained by
combining two images IF and IB

IM =M � IF + (1−M)� IB , (1)

where� specifies the element-wise multiplication. IF is the
foreground manipulated face with desired facial attributes,
whereas IB is the image that provides the background. M is
the mask delimiting the manipulated region, with each pixel
of M having greyscale value between 0.0 and 1.0. When
all the entries are restricted to 0 and 1, we have a binary
mask, such as the mask used in Poisson blending [31]. Note
that color correction techniques (e.g. color transfer [34]) are
usually applied over the foreground image IF before blend-
ing so that its color matches the background image color.

We would like to define the face X-ray as an image B
such that if the input is a manipulated image, B will reveal
the blending boundary and if the input is a real image, then
B will have zero for all its pixels.
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Figure 5. Overview of generating a training sample. Given a real face IB , we seek another real face IF to represent the manipulated variant
of IB and produce a mask to delimit the manipulated region. Then the blended face and its corresponding face X-ray can be obtained
through Equation (1) and Equation (2). .

Formally, for an input image I , we define its face X-ray
as an image B with

Bi,j = 4 ·Mi,j · (1−Mi,j), (2)

where the subscript (i, j) is the index denoting the pixel lo-
cation andM is the mask that is determined by the input im-
age I . If the input image is real, then the maskM is a trivial
blank image with either all 0-pixels or all 1-pixels. Other-
wise, the mask M will be a nontrivial image delimiting the
foreground image region. Note that the maximum value of
Mi,j · (1 −Mi,j) is no greater than 0.25 and in fact only
achieves the maximum value of 0.25 when Mi,j = 0.5. For
this reason, the face X-ray pixel Bi,j is always valued be-
tween 0 and 1. Figure 4 illustrates the relationship between
the mask M and the face X-ray B with a toy example.

In our face X-ray definition, we always assume the mask
M is soft and never use a binary mask. A binary mask M
would pose a problem for our face X-ray definition because
the corresponding face X-ray would be a blank image with
all pixels valued as 0 even whenM is not a trivial mask with
all 0-pixels or all 1-pixels. This would defeat the purpose
of detecting blending boundary in manipulated images. For
this reason, we always adopt a 3 × 3 Gaussian kernel to
turn a binary mask M into a soft mask before using it in
Equation (2).

In essence, the face X-ray aims to discover a soft mask
M with which the input image I can be decomposed into
the blending of two images from different sources according
to Equation (1). As mentioned earlier, images from differ-
ent sources have undeniable differences that, despite their
subtlety and invisibility to human eyes, are intrinsic due to
the image acquisition process.

Face X-ray is a computational representation for discov-
ering such differences in an input face image of unknown
origin.

3.2. Self-Supervised Learning

Now that we have defined the concept of face X-ray, we
shall explain one important thing in the rest of this section:
how to get training data using only real images.

As is mentioned before, all real images naturally have
their corresponding face X-rays with all 0-pixels. Yet those
trivial face X-rays are not sufficient to guide the network
learning, training data associated with nontrivial face X-
rays is certainly crucial and indispensable. One intuitive
solution is to access the manipulated images and accord-
ingly the masks generated by facial manipulation methods.
Nonetheless, we find that as face X-ray essentially cares
about only the blending boundary, it is entirely possible to
create nontrivial face X-rays by blending two real images.

To be specific, we describe the generation of nontriv-
ial face X-rays in three stages. 1) First, given a real im-
age IB , we seek another real image IF to take the place of
the manipulated variant of IB . We use the face landmarks
(extracted by [9]) as the matching criteria to search from
a random subset of the rest training videos according to
the Euclidean distance between landmarks. To increase the
randomness, we take 100 nearest neighbors and randomly
choose one as the foreground image IF . 2) In the second
stage, we generate a mask to delimit the manipulated re-
gion. The initial mask is defined as the convex hull of the
face landmarks in IB . As face manipulation methods are
not necessarily and always focused on the same area of the
face, there exist various different shapes of manipulated re-
gions in forged images, e.g., some may be manipulated only



around the mouth region. In order to cover as many shapes
of masks as possible, we first adopt random shape defor-
mation using the 2-D piecewise affine transform estimated
from the source 16 points (selected from a 4×4 grid) to the
target 16 points (deformed from source using random off-
set), and then apply Gaussian blur with random kernel size,
resulting in the final mask. 3) At last, the blended image is
obtained through Equation (1), given the foreground image
IF , the background image IB and the mask, and the blend-
ing boundary is attained by Equation (2) using the mask.
Note that we apply the color correction technique (aligning
the mean of the RGB channels respectively) to IF , similar
to existing facial manipulation methods, so as to match the
color of IB . A brief overview of generating a training sam-
ple is illustrated in Figure 5. In practice, we generate the la-
beled data dynamically along with the training process and
train our framework in a self-supervised way.

4. Face Forgery Detection Using Face X-Ray
As described above, we are able to produce a huge num-

ber of training data by exploring only real images. Let the
generated training dataset be D = {I,B, c} where I rep-
resents the image, B denotes the corresponding face X-ray
and c is a binary scalar specifying whether the image I is
real or blended. we adopt a convolutional neural network
based framework due to the extremely powerful representa-
tion learning of deep learning. The proposed framework
outputs the face X-ray given an input image I and then
based on the predicted face X-ray, outputs the probabilities
of the input image being real or blended.

Formally, let B̂ = NNb(I) be the predicted face X-ray
where NNb is a fully convolutional neural network, and
ĉ = NNc(B̂) is the predicted probability with NNc com-
posed of a global average pooling layer, a fully connected
layer, and a softmax activation layer in a sequential manner.
During training, we adopt the widely used loss functions
for the two predictions. For face X-ray, we use the cross
entropy loss to measure the accuracy of the prediction,

Lb = −
∑

{I,B}∈D

1

N

∑
i,j

(Bi,j logB̂i,j + (1− Bi,j)log(1− B̂i,j)), (3)

where N is the total number of pixels in the feature map B̂.
For the classification, the loss is,

Lc = −
∑
{I,c}∈D

(clog(ĉ) + (1− c)log(1− ĉ)). (4)

Therefore, the overall loss function is L = λLb+Lc, where
λ is the loss weight balancing Lb and Lc. In the experi-
ments, we set λ = 100 to force the network focusing more
on learning the face X-ray prediction. We train our frame-
work in an end-to-end manner using the back propagation.
More implementation details can be found in Section 5.

5. Experiments

In this section, we first introduce the overall experiment
setups and then present extensive experimental results to
demonstrate the superiority of our approach.
Training datasets. In our experiments, we adopt recent
released benchmark dataset FaceForensics++ [36] (FF++)
for training. It is a large scale video dataset consisting
of 1000 original videos that have been manipulated with
four state-of-the-art face manipulation methods: DeepFakes
(DF) [1], Face2Face (F2F) [46], FaceSwap (FS) [2], and
NeuralTextures (NT) [45]. Another training dataset is the
set of blended images that we constructed from real images.
We denote such dataset with BI, meaning the blended data
samples composited using real images in FF++.
Test datasets. To evaluate the generalization ability of the
proposed model using face X-ray, we use the following
datasets: 1) FaceForensics++ [36] (FF++) that contains four
types of facial manipulations as described above; 2) Deep-
fakeDetection2 (DFD) including thousands of visual deep-
fake videos released by Google in order to support devel-
oping deepfake detection methods; 3) Deepfake Detection
Challenge3 (DFDC) released an initial dataset of deepfakes
accompanied with labels describing whether they are gener-
ated using facial manipulation methods; 4) Celeb-DF [24],
a new DeepFake dataset including 408 real videos and 795
synthesized video with reduced visual artifacts.
Implementation detail. For the fully convolutional neural
network NNb in our framework, we adopt the recent ad-
vanced neural network architecture, i.e., HRNet [42, 43],
and then concatenate representations from all four different
resolutions to the same size 64 × 64, followed by a 1 × 1
convolutional layer with one output channel, a bilinear up-
sampling layer with 256 × 256 output size and a sigmoid
function. In the training process, the batch size is set to 32
and the total number of iterations is set to 200, 000. To ease
the training process of our framework, we warm start the re-
maining layers with fixed ImageNet pre-trained HRNet for
the first 50, 000 iterations and then finetune all layers to-
gether for the rest 150, 000 iterations. The learning rate is
set as 0.0002 using Adam [20] optimizer at first and then is
linearly decayed to 0 for the last 50, 000 iterations.

5.1. Generalization Ability Evaluation

We first verify that supervised binary classifiers experi-
ence a significant performance drop over unseen fake im-
ages. To show this,

we adopt the state-of-the-art detector, i.e. Xception [36].
Table 1 summarizes the results in terms of AUC (area

under the Receiver Operating Characteristic curve) with

2https://ai.googleblog.com/2019/09/contributing-data-to-deepfake-
detection.html

3https://deepfakedetectionchallenge.ai/dataset



Model Training set Test set AUC
DF BI DF F2F FS NT FF++

Xception [36] X – 99.38 75.05 49.13 80.39 76.34
HRNet X – 99.26 68.25 39.15 71.39 69.51

Face X-ray X – 99.17 94.14 75.34 93.85 90.62
X X 99.12 97.64 98.00 97.77 97.97

F2F BI DF F2F FS NT FF++
Xception [36] X – 87.56 99.53 65.23 65.90 79.55

HRNet X – 83.64 99.50 56.60 61.26 74.71

Face X-ray X – 98.52 99.06 72.69 91.49 93.41
X X 99.03 99.31 98.64 98.14 98.78
FS BI DF F2F FS NT FF++

Xception [36] X – 70.12 61.70 99.36 68.71 74.91
HRNet X – 63.59 64.12 99.24 68.89 73.96

Face X-ray X – 93.77 92.29 99.20 86.63 93.13
X X 99.10 98.16 99.09 96.66 98.25
NT BI DF F2F FS NT FF++

Xception [36] X – 93.09 84.82 47.98 99.50 83.42
HRNet X – 94.05 87.26 64.10 98.61 86.01

Face X-ray X – 99.14 98.43 70.56 98.93 91.76
X X 99.27 98.43 97.85 99.27 98.71

FF++ BI DF F2F FS NT FF++
Xception [36] – X 98.95 97.86 89.29 97.29 95.85

HRNet – X 99.11 97.42 83.15 98.17 94.46
Face X-ray – X 99.17 98.57 98.21 98.13 98.52

Table 1. Generalization ability evaluation. Using only classifier
suffers performance drop on other unseen facial manipulations.
Our approach improves the generalization ability by detecting face
X-ray and further gets significant improvement using the self-
supervised data. It is worth noting that our framework only using
the self-supervised data still obtains promising results.

respect to each type of manipulated videos. We observe
that excellent performance (above 99%) is obtained on the
known specific manipulation, while the performance drops
drastically for unseen manipulations. The reason may be
that the model quickly overfits to the manipulation-specific
artifacts, achieving high performance for the given data but
suffering from poor generalization ability.

Our approach tackles the forgery detection by using a
more general evidence: face X-ray. We show that the im-
proved generalization ability comes from two factors: 1) we
propose detecting the face X-ray instead of paying atten-
tion to the manipulation-specific artifacts; 2) we construct a
large number of training sample automatically and effort-
lessly composited from real images so that the model is
adapted to focus more on the face X-rays. Finally, we show
that our method, even only using the self-supervised data, is
capable of achieving a high detection accuracy.
The effect of detection using face X-ray. We first evaluate
our model detecting face X-rays using the same training set
and training strategy as Xception [36]. In order to obtain
accurate Face X-rays for the manipulated images, we again
adopt the generation process in Section 3.2 by considering
the real image as background and the fake image as fore-
ground, given a pair of a real image and a fake one. For fair
comparison, we also show the results of the binary classi-

fier using the same network architecture with ours, which is
denoted as HRNet in the table. The comparison results are
shown in Table 1. It can be clearly seen that our approach
gets significantly improvement on the unseen facial manip-
ulations, verifying our hypothesis that explicitly detecting
face X-ray is more generalizable.
The effect of additional self-supervised data. Further, we
train our framework with additional blended images that
capture various types of face X-rays. The results are given
in Table 1, showing that large improvement has been ob-
tained again. We think that there are two advantages of us-
ing the additional blended images. One is the benefit of
extra training data as it is known that increasing the train-
ing data always leads to better model and thus improved
performance. Another important thing is that the region
inside the boundary of blended images is actually real in-
stead of synthesized, making the model less over-fitting to
manipulation-specific artifacts.
Results of only using self-supervised data. Finally we
present the results of our framework using only the self-
supervised data, i.e. BI, in Table 1. The performance in
terms of AUC on the four representative facial manipula-
tions DF, F2F, FS, NT is 99.17%, 98.57%, 98.21%, 98.13%
respectively. This shows that our model, even without fake
images generated by any of the state-of-the-art face manip-
ulation methods, still achieves a competitively high detec-
tion accuracy. We also show the results of classifer which
is trained over BI by considering BI as fake images. The
performance is much better than the previous above super-
visely trained classifiers. This is probably because BI forced
the classifier to learn the face X-rays, leading to better gen-
eralization. Nevertheless, our approach using face X-ray
still gets overall better results and thus again validates the
conclusion that using face X-ray is more generalizable.

5.2. Benchmark Results on Unseen Datasets

In order to facilitate the industry as well as the academia
to develop advanced face forgery detectors, a growing num-
ber of datasets containing a large amount of high-quality
deepfake videos have been released recently. Here we show
the benchmark results of our framework on the detection of
those unseen popular datasets.
Results in terms of forgery classification. We first show
the forgery classification results in terms of AUC, AP (Av-
erage Precision) and EER (Equal Error Rate). The results
of our framework on recent released large scale datasets,
i.e. DFD, DFDC and Celeb-DF, are shown in Table 2. We
also show the results of the state-of-the-art detector Xcep-
tion [36] as a baseline. We can see that our framework,
without using any images generated from facial manipu-
lation methods, already performs better than the baseline.
Moreover, if we exploit additional fake images even not
from the same distribution as the test set, the performance
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Figure 6. Visual results on various facial manipulation methods including our self-supervised generated blended images. For the facial
manipulations, the groundtruth is obtained by computing the absolute element-wise difference between the manipulated image and the
corresponding real image and then converting to grayscale followed by normalization. It can be clearly seen from the figure that the
predicted face X-ray well captures the shape of the corresponding groundtruth. More visual results can be found in the supplementary.

Model Training dataset Test dataset
DFD DFDC Celeb-DF

AUC AP EER AUC AP EER AUC AP EER
Xception [36] FF++ 87.86 78.82 21.49 48.98 50.83 50.45 36.19 50.07 59.64

Face X-ray BI 93.47 87.89 12.72 71.15 73.52 32.62 74.76 68.99 31.16
Face X-ray FF++ and BI 95.40 93.34 8.37 80.92 72.65 27.54 80.58 73.33 26.70

Table 2. Benchmark results in terms of AUC, AP and EER for our framework and the state-of-the-art detector Xception [36] on unseen
datasets. Our framework, trained in a self-supervised way, already performs better than the baseline. The performance is further greatly
improved in most cases if we exploit additional fake images even not from the same distribution as the test set.

is further greatly improved in most cases.

Results in terms of face X-ray prediction. Our framework
makes predictions about the forgery based on the existence
of nontrivial face X-rays. We show that our method can reli-
ably predict the face X-rays for unseen facial manipulations
and thus provide explainable decisions for the inference.
The visual examples on various types of fake images in-
cluding the blended images generated in the proposed self-
supervised learning are shown in Figure 6. For the facial
manipulations, the groundtruth is obtained by computing
the absolute element-wise difference between the manipu-
lated image and the corresponding real image and then con-
verting to grayscale followed by normalization. It can be
clearly seen from the figure that the predicted face X-ray
well captures the shape of the corresponding groundtruth.

5.3. Comparison with Recent Works

Some recent related works [23, 13, 11, 29] have also no-
ticed the generalization issue and tried to solve the problem
to a certain degree. FWA [23] also adopts a self-supervised
way that creates negative samples from real images. Yet
its goal is to characterize face warping artifacts only widely
existed in DeepFake generated videos. The comparison is
given in Table 3.

Three other related works are LAE [13], FT [11], both
attempting to learn intrinsic representation instead of cap-
turing artifacts in the training set, and MTDS [29] learning
detection and localization simultaneously.

We present the comparison, which is evaluated over a
new type of manipulated data when the model is trained on
another type, in Table 4. Note that we directly cite the num-



Model AUC
FF++/DF Celeb-DF

FWA [23] 79.20 53.80
Face X-ray 99.17 74.76

Table 3. AUC comparison with FWA.

Model Training set Detection accuracy
F2F FS F2F FS

LAE [13] X – 90.93 63.15
FT-res [11] X 4 images 94.47 72.57
MTDS [29] X – 92.77 54.07
Face X-ray X – 97.73 85.69

Table 4. Detection accuracy comparison with recent methods.
Note that here we use the HQ version (a light compression) of
FF++ dataset for fair comparison.

bers from their original papers for fair comparison. From
the two tables, we can see that our framework largely ex-
ceeds recent state-of-the-arts.

5.4. Analysis of the proposed framework

The effect of data augmentation. The overall goal of data
augmentation in the self-supervised data generation is to of-
fer a large amount of different types of blended images to
give the model the ability to detect various manipulated im-
ages. Here, we study two important augmentation strate-
gies: a) mask deformation which intends to bring larger va-
riety to the shape of face X-ray; b) color correction in order
to produce a more realistic blended image. We think that
both strategies are crucial for generating diverse and high-
quality data samples that are definitely helpful for network
training.

To show this,
we present the comparison on FF++ and DFD in Table 5.

It can be seen that both strategies are important and with-
out either one of the two strategies will degrade the perfor-
mance.
Generalization to other types of blending. We adopt al-
pha blending in the self-supervised data generation. Though
we have demonstrated the performance of the proposed
framework on unseen manipulations that might not use al-
pha blending, we here precisely present a study on the
results of our approach with respect to Poisson blending,
another widely used blending technique in existing face
manipulation methods, and deep blending (GP-GAN [48])
which utilizes neural network rather than Equation (1). We
construct the test data by using different types of blend-
ing and evaluate the model when the training data is con-
structed with alpha blending. The results are given in Ta-
ble 6. We can see that our framework still gets satisfactory
results on unseen blending types though with visible perfor-
mance drops on Possion blending.

AUC
FF++ DFD

w/o mask deformation 93.92 85.89
w/o color correction 96.21 89.91

Face X-ray 98.52 93.47

Table 5. Ablation study for the effect of (a) mask deformation and
(b) color correction in the self-supervised data generation pipeline.

Blending type AUC AP EER
Alpha blending 99.46 98.50 1.50
Possion blending 94.62 88.85 11.41
Deep blending [48] 99.90 98.77 1.36

Table 6. Results over test data using Possion blending and deep
blending when the training data is constructed with alpha blending.
Our framework still gets satisfactory results on unseen blending
types though with visible performance drops on Poisson blending.

6. Limitations

While we have demonstrated satisfactory performance
on general detection in the experiments, we are aware that
there exist some limitations of our framework.

First, we realize that detecting face X-ray may fail in two
aspects. 1) Our method relies on the existence of a blending
step. Therefore, when an image is entirely synthetic, it is
possible that our method may not work correctly. However
the fake news

such as videos of someone saying and doing things they
didn’t, usually require blending as a post-processing step.
This is because so far without blending, it is unlikely to
completely generate a realistic image with desired target
background. We indeed provide a promising way to detect
those numerous blended forgeries. 2) We notice that

one can develop adversarial samples to against our de-
tector.

This is inevitable since it is an arms race between image
forgery creation and detection, which would inspire both
fields to develop new and exciting techniques.

Besides, similar to all the other forgery detectors, our
method also suffers from performance drop when encounter
low resolution images. This is because classifying low res-
olution images is more challenging as the forgery evidence
is less significant. We test our framework on the HQ version
(a light compression) and the LQ version (a heavy compres-
sion) of FF++ dataset and the overall AUC are 87.35% and
61.6% respectively. This is expected as the heavier the com-
pression, the less significant the forgery evidence and thus
the lower the performance.

7. Conclusion

In this work, we propose a novel face forgery evidence,
face X-ray, based on the observation that most existing face



manipulation methods share a common blending step and
there exist intrinsic image discrepancies across the blend-
ing boundary, which is neglected in advanced face manip-
ulation detectors. We develop a more general face forgery
detector using face X-ray and the detector can be trained
in a self-supervised manner, without fake images generated
by any of the state-of-the-art face manipulation methods.
Extensive experiments have been performed to demonstrate
the generalization ability of face X-ray, showing that our
framework is capable of accurately distinguishing unseen
forged images and reliably predicting the blending regions.
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[31] Patrick Pérez, Michel Gangnet, and Andrew Blake. Pois-
son image editing. ACM Transactions on graphics (TOG),
22(3):313–318, 2003. 3

[32] Weize Quan, Kai Wang, Dong-Ming Yan, and Xiaopeng
Zhang. Distinguishing between natural and computer-
generated images using convolutional neural networks.
IEEE Transactions on Information Forensics and Security,
13(11):2772–2787, 2018. 2

[33] Nicolas Rahmouni, Vincent Nozick, Junichi Yamagishi, and
Isao Echizen. Distinguishing computer graphics from natu-
ral images using convolution neural networks. In 2017 IEEE
Workshop on Information Forensics and Security (WIFS),
pages 1–6. IEEE, 2017. 2

[34] Erik Reinhard, Michael Adhikhmin, Bruce Gooch, and Peter
Shirley. Color transfer between images. IEEE Computer
graphics and applications, 21(5):34–41, 2001. 3
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